Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Biol Evol ; 40(12)2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37979163

RESUMO

Whole genome duplication (WGD) is an evolutionary event resulting in a redundancy of genetic material. Different mechanisms of WGD, allo- or autopolyploidization, lead to distinct evolutionary trajectories of newly formed polyploids. Genome studies on such species are important for understanding the early stages of genome evolution. However, assembling neopolyploid is a challenging task due to the presence of 2 homologous (or homeologous) chromosome sets and therefore the existence of the extended paralogous regions in its genome. Post-WGD evolution of polyploids includes cytogenetic diploidization leading to the formation of species, whose polyploid origin might be hidden by disomic inheritance. Earlier we uncovered the hidden polyploid origin of the free-living flatworms of the genus Macrostomum (Macrostomum lignano, M. janickei, and M. mirumnovem). Cytogenetic diploidization in these species is accompanied by intensive chromosomal rearrangements including chromosomes fusions. In this study, we unravel the M. lignano genome organization through generation and sequencing of 2 sublines of the commonly used inbred line of M. lignano (called DV1) differing only in a copy number of the largest chromosome (MLI1). Using nontrivial assembly free comparative analysis of their genomes, we deciphered DNA sequences belonging to MLI1 and validated them by sequencing the pool of microdissected MLI1. Here we presented the uncommon mechanism of genome rediplodization of M. lignano, which consists of (i) presence of 3 subgenomes, which emerged via formation of large fused chromosomes and its variants, and (ii) sustaining their heterozygosity through inter- and intrachromosomal rearrangements.


Assuntos
Platelmintos , Animais , Platelmintos/genética , Cromossomos/genética , Genoma Helmíntico , Poliploidia , Sequência de Bases
2.
Sci Rep ; 10(1): 1058, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974427

RESUMO

All songbirds studied to date have an additional Germline Restricted Chromosome (GRC), which is not present in somatic cells. GRCs show a wide variation in genetic content and little homology between species. To check how this divergence affected the meiotic behavior of the GRC, we examined synapsis, recombination and copy number variation for GRCs in the closely related sand and pale martins (Riparia riparia and R. diluta) in comparison with distantly related estrildid finches. Using immunolocalization of meiotic proteins and FISH with GRC-specific DNA probes, we found a striking similarity in the meiotic behavior of GRCs between martins and estrildid finches despite the millions of years of independent evolution. GRCs are usually present in two copies in female and in one copy in male pachytene cells. However, we detected polymorphism in female and mosaicism in male martins for the number of GRCs. In martin and zebra finch females, two GRCs synapse along their whole length, but recombine predominately at their ends. We suggest that the shared features of the meiotic behavior of GRCs have been supported by natural selection in favor of a preferential segregation of GRCs to the eggs.


Assuntos
Pareamento Cromossômico , Variações do Número de Cópias de DNA , Tentilhões/genética , Recombinação Genética , Cromossomos Sexuais/genética , Andorinhas/genética , Animais , Feminino , Masculino
3.
J Cell Biochem ; 120(10): 17208-17218, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31106442

RESUMO

Neuronal tracing is a modern technology that is based on the expression of fluorescent proteins under the control of cell type-specific promoters. However, random genomic integration of the reporter construct often leads to incorrect spatial and temporal expression of the marker protein. Targeted integration (or knock-in) of the reporter coding sequence is supposed to provide better expression control by exploiting endogenous regulatory elements. Here we describe the generation of two fluorescent reporter systems: enhanced green fluorescent protein (EGFP) under pan-neural marker class III ß-tubulin (Tubb3) promoter and mEos2 under serotonergic neuron-specific tryptophan hydroxylase 2 (Tph2) promoter. Differentiation of Tubb3-EGFP embryonic stem (ES) cells into neurons revealed that though Tubb3-positive cells express EGFP, its expression level is not sufficient for the neuronal tracing by routine fluorescent microscopy. Similarly, the expression levels of mEos2-TPH2 in differentiated ES cells was very low and could be detected only on messenger RNA level using polymerase chain reaction-based methods. Our data shows that the use of endogenous regulatory elements to control transgene expression is not always beneficial compared with the random genomic integration.


Assuntos
Proteínas de Fluorescência Verde/metabolismo , Proteínas Luminescentes/metabolismo , Células-Tronco Embrionárias Murinas/metabolismo , Neurônios/metabolismo , Regiões Promotoras Genéticas , Triptofano Hidroxilase/genética , Tubulina (Proteína)/genética , Animais , Diferenciação Celular , Células Cultivadas , Vetores Genéticos , Proteínas de Fluorescência Verde/genética , Proteínas Luminescentes/genética , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Neurônios/citologia , Recombinação Genética , Transgenes
4.
Proc Natl Acad Sci U S A ; 116(24): 11845-11850, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31036668

RESUMO

An unusual supernumerary chromosome has been reported for two related avian species, the zebra and Bengalese finches. This large, germline-restricted chromosome (GRC) is eliminated from somatic cells and spermatids and transmitted via oocytes only. Its origin, distribution among avian lineages, and function were mostly unknown so far. Using immunolocalization of key meiotic proteins, we found that GRCs of varying size and genetic content are present in all 16 songbird species investigated and absent from germline genomes of all eight examined bird species from other avian orders. Results of fluorescent in situ hybridization of microdissected GRC probes and their sequencing indicate that GRCs show little homology between songbird species and contain a variety of repetitive elements and unique sequences with paralogs in the somatic genome. Our data suggest that the GRC evolved in the common ancestor of all songbirds and underwent significant changes in the extant descendant lineages.


Assuntos
Cromossomos/genética , Células Germinativas/fisiologia , Aves Canoras/genética , Animais , Feminino , Genoma/genética , Genômica/métodos , Hibridização in Situ Fluorescente/métodos , Masculino , Oócitos/fisiologia , Sequências Repetitivas de Ácido Nucleico/genética
5.
Chromosome Res ; 21(1): 37-48, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23354734

RESUMO

Homologous chromosome synapsis in inversion heterozygotes results in the formation of inversion loops. These loops might be transformed into straight, non-homologously paired bivalents via synaptic adjustment. Synaptic adjustment was discovered 30 years ago; however, its relationship with recombination has remained unclear. We analysed this relationship in female mouse embryos heterozygous for large paracentric inversion In(1)1Rk using immunolocalisation of the synaptonemal complex (SYCP3) and mature recombination nodules (MLH1) proteins. The frequency of cells containing bivalents with inversion loops decreased from 69 % to 28 % during pachytene. If an MLH1 focus was present in the non-homologously paired inverted region of the straight bivalent, it was always located in the middle of the inversion. Most of the small, incompletely adjusted loops contained MLH1 foci near the points at which pairing partners were switched. This observation indicates that the degree of synaptic adjustment depended on the crossover position. Complete synaptic adjustment was only possible if a crossover (CO) was located exactly in the middle of the inversion. If a CO was located at any other site, this interrupted synaptic adjustment and resulted in inversion loops of different sizes with an MLH1 focus at or near the edge of the remaining loop.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Inversão Cromossômica/genética , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Oócitos/citologia , Recombinação Genética , Animais , Proteínas de Ciclo Celular , Pareamento Cromossômico , Troca Genética , Proteínas de Ligação a DNA , Feminino , Heterozigoto , Meiose/genética , Camundongos , Proteína 1 Homóloga a MutL , Oócitos/crescimento & desenvolvimento , Complexo Sinaptonêmico/genética
6.
Genetics ; 178(2): 621-32, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18245365

RESUMO

The Eurasian common shrew (Sorex araneus L.) is characterized by spectacular chromosomal variation, both autosomal variation of the Robertsonian type and an XX/XY(1)Y(2) system of sex determination. It is an important mammalian model of chromosomal and genome evolution as it is one of the few species with a complete genome sequence. Here we generate a high-precision cytological recombination map for the species, the third such map produced in mammals, following those for humans and house mice. We prepared synaptonemal complex (SC) spreads of meiotic chromosomes from 638 spermatocytes of 22 males of nine different Robertsonian karyotypes, identifying each autosome arm by differential DAPI staining. Altogether we mapped 13,983 recombination sites along 7095 individual autosomes, using immunolocalization of MLH1, a mismatch repair protein marking recombination sites. We estimated the total recombination length of the shrew genome as 1145 cM. The majority of bivalents showed a high recombination frequency near the telomeres and a low frequency near the centromeres. The distances between MLH1 foci were consistent with crossover interference both within chromosome arms and across the centromere in metacentric bivalents. The pattern of recombination along a chromosome arm was a function of its length, interference, and centromere and telomere effects. The specific DNA sequence must also be important because chromosome arms of the same length differed substantially in their recombination pattern. These features of recombination show great similarity with humans and mice and suggest generality among mammals. However, contrary to a widespread perception, the metacentric bivalent tu usually lacked an MLH1 focus on one of its chromosome arms, arguing against a minimum requirement of one chiasma per chromosome arm for correct segregation. With regard to autosomal chromosomal variation, the chromosomes showing Robertsonian polymorphism display MLH1 foci that become increasingly distal when comparing acrocentric homozygotes, heterozygotes, and metacentric homozygotes. Within the sex trivalent XY(1)Y(2), the autosomal part of the complex behaves similarly to other autosomes.


Assuntos
Recombinação Genética , Tupaiidae/genética , Animais , Ecossistema , Variação Genética , Cariotipagem , Masculino , Metáfase , Mitose , Estações do Ano , Espermatócitos/citologia , Reino Unido , Cromossomo X , Cromossomo Y
7.
Chromosome Res ; 15(7): 881-90, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17899406

RESUMO

Two closely related shrew species, Sorex granarius and Sorex araneus, in which Robertsonian rearrangements have played a primary role in karyotype evolution, present very distinct telomere length patterns. S. granarius displays hyperlong telomeres specifically associated with the short arms of acrocentrics, whereas telomere lengths in S. araneus are rather short and homogenous. Using a combined approach of chromosome and fibre FISH, modified Q-FISH, 3D-FISH, Ag-NOR staining and TRF analysis, we carried out a comparative analysis of telomeric repeats and rDNA distribution on chromosome ends of Sorex granarius. Our results show that rDNA sequences forming active nuclear organizing regions are interspersed with the long telomere tracts of all short arms of acrocentrics. These observations suggest that the major rearrangements that gave rise to today's karyotype in S. granarius were accompanied by a profound reorganization of chromosome ends, which comprised extensive amplification of telomeric and rDNA repeats on the short arms of acrocentrics and finally contributed to the stabilization of telomeres. This is the first time that such telomeric structures have been observed in any mammalian species.


Assuntos
Evolução Biológica , Cromossomos de Mamíferos/genética , DNA Ribossômico/genética , Musaranhos/genética , Telômero/genética , Animais , DNA Ribossômico/análise , Hibridização in Situ Fluorescente , RNA Ribossômico 18S/genética
8.
Chromosome Res ; 13(6): 617-25, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16170626

RESUMO

Sorex araneus and Sorex granarius are sibling species within the Sorex araneus group with karyotypes composed of almost identical chromosome arms. S. granarius has a largely acrocentric karyotype, while, in S. araneus, various of these acrocentrics have combined together by Robertsonian (Rb) fusions to form metacentrics, with the numbers and types of metacentrics differing between chromosomal races. Our studies on telomeric sequences in S. araneus and S. granarius revealed differences between chromosomes and between species. In S. araneus (the Novosibirsk race), hybridization signals were present on the telomeres of all the chromosomes after FISH with a PCR-generated telomeric probe. In addition, hybridization signals were observed at high frequencies in the pericentric regions of some but not all metacentrics formed by Rb fusion. There were fewer signals on those metacentrics formed earlier in the evolution of S. araneus. This suggests that S. araneus chromosomes retain at least some telomeric repeats during Rb fusion, but that these repeats are lost or modified over time. These results are critical for the interpretation of the well-studied hybrid zones between chromosomal races of S. araneus, given that Rb fission has been postulated in such hybrid zones and that the likelihood of Rb fission will relate to presence/absence of telomeric sequences at the centromeres of metacentrics. In S. granarius, there were strong signals at the proximal (centromeric) telomeres of the acrocentrics after FISH with a DNA telomeric probe. FISH with a PNA telomeric probe on S. granarius acrocentrics showed that the proximal telomeres were 213 kb on average, while the length of the distal telomeres was 3.8 kb on average. Two-colour FISH, using a telomeric DNA probe and a microdissected probe generated from the pericentric regions of the S. granarius chromosomes a and b, revealed regions on distinct chromatin fibres where telomeric and microdissected probes were colocalized or localized sequentially. The proximal telomeres of S. granarius are highly unusual both in their large size and their heterogeneous structure relative to the telomeres of other mammals.


Assuntos
Musaranhos/genética , Telômero/genética , Animais , Células Cultivadas , Cromossomos , Hibridização in Situ Fluorescente
9.
Folia Biol (Krakow) ; 51(1-2): 1-11, 2003.
Artigo em Inglês | MEDLINE | ID: mdl-14686642

RESUMO

The analysis of the distribution of repetitive DNA of the B chromosomes of Podisma sapporensis in the A and B chromosomes of the natural populations and in A chromosomes of three other species of the Podismini grasshoppers were made. DNA-libraries of the B chromosome and the euchromatic segment of the A chromosome of P. sapporensis were generated by meiotic chromosome microdissection followed by degenerated oligonucleotide primed polymerase chain reaction (DOP-PCR). Paints based on these DNA-libraries were used for FISH analysis to detect localization of homologous sequences in A and B chromosomes of P. sapporensis from different natural populations. On the basis of the FISH analysis the authors suggest that evolution of the B chromosomes in Podisma sapporensis was associated mainly with the insertions of "alien DNA sequences" into ancestral A chromosome and their further amplification. The number of initial sites of amplifications differed in the different Bs, the distance between these sites also varying. Karyotype evolution in P. sapporensis was associated partly with the insertion of "alien DNA sequences" into pericentromeric chromosomal regions. Insertion into the small short arms of the acrocentric chromosomes followed, with the DNA amplification leading to the formation of the additional C-heterochromatic arms or euchromatic-like regions of different size.


Assuntos
Cromossomos/genética , Expansão das Repetições de DNA , Biblioteca Gênica , Gafanhotos/genética , Animais , Hibridização in Situ Fluorescente , Cariotipagem , Masculino , Reação em Cadeia da Polimerase
10.
ILAR J ; 39(2-3): 182-188, 1998.
Artigo em Inglês | MEDLINE | ID: mdl-11528077
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...